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Calculations have been performed for the case of a thin projectile striking a semi­
infinite tar.get. Because the projectile is considered to be infinite in extent in directions 
perpendicular to .its direction of travel, the resulting flow is one-dimensional in the strain. 
It is assumed that stresses and strains are related by elastoplastic relations. Work of other 
authors has been extended so that (1) the shear modulus depends on the magnitude of the 
hydrostatic compression ; (2) the yield is increased as the hydrostatic pressure is increased; 
(3) the artificial viscosity method is used for solving the flow equations. Poisson's ratio 
is assumed to be a constant. Comparison-of the calculated results with experimental results 
gives strong support to the assumptions that both aluminum and copper yield elastoplastic­
ally when the maximum stress is about 0.1 megabars. No difficulties are found in applying 
the artificial viscosity method developed by von Neumann and Richtmyer to problems involv­
ing elastoplastic flow. 

I. Introduction 

The mechanics of attenuation of stress waves in elastoplastic solids has been the sub­
ject of extensive theoretical and experimental investigations during the last twenty-five years. 
Most of these studies have been !iirected towarcl the understanding of wave propagation in rods 
and, after the first blush of success ~eported by von Karman and Taylor, successful correla­
tions of calculations and measurements have been few. At least part- of this failure has been 
due to the essentially two-dimensional character of wave propagation on a bar; other devia­
tions have been widely attributed to the dependence of yield point and plastic moduli on strain 
rates. 

In recent years it has become possible to produce well-controlled plane waves in solids 
by means of explosive or high velocity impact. During . the same period techniques for pre­
cisely measuring the waves so produced have been developed, and meaningful comparisons 
between measurements and theoretical calculations under conditions of true uniaxial strain 
have become possible. During thi s same period the development of high speed computing ma­
chines has made ita relati vely simple matter to sy stematically alter the 'consti tuti ve relations 
used for wave calculations and so to approach a theoretical model that agrees arbitrarily well 
with experimental measurements. It was toward such a comparison that work reported here was 
directed. -
. The work was performed in a study of the attenuation of shock waves in aluminum and 
copper. The amplitude of the stress carried by the shock waves was about 0.1 megabar ool1i 
dynes/ cm2, or approximately 10 5 atmospheres). Measurements were made of the free-surface 
velocities of targets that had been hit by projectiles in the form of 1/8 inch thick aluminum 
plates that had been accelerated to a velocity of about 0.125 cm/ j.lsec by high explosives. 
The use of targets of progressively greater thickness gave information on the attenuation of 
the shock in the material being studied. 

The results of these experiments are compared with the results of calculations based on 
an elastoplastic model for the relation of stress to strain (or stress to volume) and a fluid 
model. 

The compression in a uniform shock wave traveling through an elastoplastic medium can 
be adequately described with conventional analysis supplemented by relatively simple numeri­
cal computations based on the theory of characteristics. When the shock wave is nonuniform, 
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wave interactions complicate the calculations, as do the presence of interfaces between ma­
terials having different acoustic impedances. For such reasons , the method of characteristics 
is not suitable in many situations for which numerical solutions are desired. An alternative 
is available in the form of the method of von Neumann and Richtmyer [1]. Boundaries, including 
free surfaces , are readily accommodated by this method and its application to the flow in an 
elastoplastic medium is straightforward. A detailed comparison of the relative advantages of 
the theory of characteristics and the method of von Neumann and Richtmyer (hereafter called 
the Q-method) in different problems is given by Fife, Eng, and Young [2] for the simpler case 
of wave propagation in a fluid. 

The Q-method consi sts of using fini te difference equations based on increments in real 
space and time to replace the differential equations that describe the flow, and of smoothing 
discontinuities through introduction of an artificial viscosity. For one-dimensional flow, the 
equations of continuity and motion in Lagrangian coordinates are 

av au 
Po a;-= ax 

(1) 

au a(px + Q) 

Po a; = - ax 
(2) 

where u is particle velocity, V is specific volume, t is time, x is Lagrange space coordinate, 
Po is density of the undisturbed medium, and Px is compressive stress in the x direction. Q 
is the artificial "viscosity. The particular form for Q used in the present case is 

Q = _ (Cq /'l x)2 au I au I. 
v ax ax 

(3) 

Thi s form for Q sati sfies the following condi tions : 

a . It eliminates discontinuities in the flow field ; 

b. The thickness of the shock layer is the order of the space increment, /'lx, used in the 
computation; 

c. The effects of Q outside the shock layers are negligible; 

d. The Rankine-Hugoniot equations hold if gradients outside the shock layer are small. 

The use of thi s method when Px and V are related by an elastoplastic model has caused 
no problems with instabilities in the cal culations . 

II. The Elastoplastic Relation Between Stress and Strain 

Earlier work on the theory of plane wave propagation in elastoplastic materials was done 
by White and Griffis [3], Wood [4] , and Morland [5] . Their numerical methods were inadequate 
for generali zation to fini te ampli tude waves, however, and thi s work may be regarded as an 
extension of theirs. At present only one-dimensional strain is considered, and the direction 
of propagation is taken to be the x-axis; stresses and strains without subscripts relate to that 
direction. Figure 1 shows th e stres s-s train relations in a cycle of one-dimensional com­
pression starting at Px= TJ = O. We can always write the identity 

dpx = dp + 4/3 dr, (4) 

where p is mean compressi ve stress , Px is compressive stress in the direction of propagation, 
and dr = (dp - dp )/2 is maximum re solved shear stress. In the plastic state, dT = 0 except 
for strain haideninj. For both the Tresca and the von Mises yield conditions in this geometry , 
the maximum value of T is determined by the yield stress, Y = 2T. Equation (4) is to be special­
ized for the curve segments ba, ae, ef, and fb of Fig. 1 

Along ba: 

The material i s behaving elas ticall y, T< Y/ 2, and so 

dpx = (K + 4p./3) d£x = 3dp (l- v)/(l + v), (5) 


